Обогрев водостоков
 

Теплые полы. Теория и практика.

V. Bearzi

Технология теплых полов в последнее время существенно модернизировалась. Теплый пол теперь обеспечивает максимальный комфорт в помещении, поскольку современная технология позволяет значительно уменьшить конвективные процессы, объемы перемещаемых загрязняющих веществ и масштаб теплового воздействия в отношении человека, а также – что не менее важно – сократить габариты такой системы отопления и улучшить параметры относительной влажности в помещении.

Настоящий прорыв в развитии систем отопления, расположенных под полом, состоялся в начале 1980-х годов, когда изменился подход к оценке тепловой изоляции ограждающих конструкций здания в сторону сокращения теплопотерь. Сегодня тепло, излучаемое теплым полом, имеет тот оптимальный уровень, с помощью которого обеспечивается эффективное отопление жилых помещений, когда нет нужды дополнять такие системы отопительными радиаторами – при этом температура поверхности не создает людям дискомфортных ощущений. Кроме того, влажность, имеющая тенденцию к недостаточности в самую холодную погоду, теперь существенно более благоприятна, чем прежде, поскольку при лучистом отоплении при равной результирующей температуре она коррелируется с более низкой температурой воздуха. Приведем пример. Предположим, нам требуется обеспечить в помещении при помощи системы теплого пола активную температуру 20 °С. Температура поверхности пола составит 26 °С, при этом из каждой геометрической точки во всех направлениях испускаются инфракрасные лучи, как показано на рис. 1. Лучи попадают в стены, потолок и все твердые тела, находящиеся в помещении. В свою очередь сами нагреваемые таким образом поверхности из каждой своей геометрической точки во всех направлениях тоже испускают инфракрасные лучи, так что собственная температура всех ограждающих конструкций всегда выше температуры воздуха. В нашем примере, показанном на рис. 1, если мы примем как данность, что все ограждения имеют однородный характер, следует, что их средняя температура составляет 23 °С. Для получения требуемой результирующей температуры воздух в помещении нагревается до уровня 17 °С, определяемого экранированным термометром. При такой температуре воздух при равных значениях абсолютной влажности будет иметь более высокую относительную влажность по сравнению с воздухом помещения, отапливаемого системой воздушного отопления, где, чтобы получить ту же самую результирующую температуру 20 °С, потребуется нагреть воздух до 23 °С при средней температуре ограждений 17 °С.

Рисунок 1.

Температурный режим. При использовании в качестве отопительной системы теплого пола все окружающие предметы и поверхности в отапливаемом помещении, включая людей внутри него, дают определенный излучающий и реизлучающий эффект, в силу которого их собственная температура всегда выше температуры воздуха. Из каждой геометрической точки во всех направлениях испускаются инфракрасные лучи. В нашем, весьма условном, примере показан температурный режим поверхности ограждающих конструкций. Из примера, если мы примем как данность, что все перекрытия имеют однородный характер, следует, что их средняя температура составляет 23 °С. Для получения требуемой результирующей температуры воздух в помещении нагревается до уровня 17 °С, определяемого экранированным термометром

В этой связи представляет интерес психрометрический график, на котором влагосодержание порядка 6 г/кг при 17 °С дает оптимальный уровень относительной влажности 50 %.

При той же абсолютной влажности при температуре 23 °С относительная влажность снижается до 35 %, вследствие чего воздух в таком помещении будет излишне сухим. К тому же и расход тепла на нагрев инфильтрирующегося воздуха снижается.

В расчетном режиме разница тепловой мощности, выделенной на нагрев инфильтрующегося воздуха, обычно варьируется в пределах 5– 10 %, но в течение зимы она может достигать 50 % при том же самом параметре и равном комфорте и определенном снижении внутренних конвективных потоков. Что касается температуры поверхности пола, то при использовании систем теплых полов люди точно не будут жаловаться на замерзшие ноги, что как раз весьма часто случается в помещениях с конвективным отоплением. Но у всего есть предел. Поэтому очень важно соблюдение требований соответствующих регламентов*.

 

*В частности, UNI-EN 1264 от октября 1999 года оптимальный комфорт (рис. 2) в жилых помещениях предусматривает ограничение излучающей способности теплого пола так, чтобы температура его поверхности не превышала 28 °С, что обеспечивается точным расчетом температуры теплоносителя и конфигурации змеевиков, а также применением надежной и точной системы теплорегуляции.

Рисунок 2.

Ощущение комфорта – зависимость числа людей, ощущающих дискомфорт, от температуры пола

Излучающая эффективность теплого пола и комфорт в помещении

Эффективность системы отопления данного типа теоретически составляет 100 %, поскольку теплообмен осуществляется посредством излучения напрямую без промежуточных теплоносителей. В отличие от голой теории, на практике чем выше температура стен, тем больше тепла уходит наружу.

Потери эти обусловлены следующими факторами:

• Конфигурация отапливаемого помещения, наличие наружных стен, неотапливаемых арочных галерей, неотапливаемого нижнего этажа.

• Теплоизоляция ограждающих конструкций – в первую очередь на участке укладки отопительных змеевиков и низа стен.

• Теплообмен со стенами и потолочным перекрытием, вызванный более высокой поверхностной температурой поверхности греющей системы и более низким общим поверхностным теплообменом вследствие более низкой конвекции.

Расчет параметров теплого пола выполняется с учетом следующих факторов: используемые излучающие панели, мощность кабеля змеевика, межосевые расстояния витков змеевика, тип и плотность теплопередающих и теплоизоляционных материалов, а также температура воды на входе, перепад температуры между входом и выходом на каждом змеевике и температура воздуха в помещении. Базовая характеристика теплого пола представлена на рис. 4. Здесь определяется зависимость излучающей способности пола и средней температуры его поверхности. По абсциссе отложен перепад между средней температурой поверхности пола и температурой воздуха, по ординате – плотность теплового потока, измеряемая в Вт/м2. Мощность излучения ограничивается, чтобы температура поверхности пола не превышала предельно установленной температуры 28–29 °С. Для отдельных типов помещений возможны исключения, например, для ванных комнат, коридоров и служебных помещении, а также периферийных участков, где температура поверхности пола может подниматься до 35 °С, однако даже в последнем случае такая температура все-таки не рекомендуется, поскольку это вызовет рост потери тепла по периметру на стыках с внешними стенами.

Рисунок 4.

Базовая характеристика теплого пола. По абсциссе отложен перепад температуры между средней температурой поверхности пола и температурой воздуха, по ординате – плотность теплового потока в Вт/м2. При результирующей температуре 20 °С и средней температуре поверхности пола 28 °С средний перепад составит смещение 8 К, а тепловой поток пола – порядка 87 Вт/м2

 
Теплосвет

Это интересно